Ethylene biosynthesis in Botrytis cinerea.

نویسندگان

  • Véronique Chagué
  • Yigal Elad
  • Radwan Barakat
  • Paul Tudzynski
  • Amir Sharon
چکیده

Ethylene is often released during plant pathogenesis. Enhanced ethylene biosynthesis by the attacked plant, and formation of ethylene by the attacking pathogen may be involved. We defined the biosynthetic pathway of ethylene in the pathogenic fungus Botrytis cinerea, and characterized the conditions that affect ethylene production in vitro. During the first 48 h of culture the fungus uses methionine to produce alpha-keto gamma-methylthiobutyric acid (KMBA) and secretes it to the medium. In darkness, KMBA accumulates in the medium. In light KMBA is photo-oxidized and ethylene is released. The photo-oxidation reaction is spontaneous and does not involve any enzymatic activity. Low levels of ethylene are produced in darkness between 48 and 96 h of culture. Adding peroxidase to dark-grown cultures induced ethylene formation. The results suggest that formation and secretion of KMBA by B. cinerea may affect ethylene levels during plant infection.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Tomato transcriptome and mutant analyses suggest a role for plant stress hormones in the interaction between fruit and Botrytis cinerea

Fruit-pathogen interactions are a valuable biological system to study the role of plant development in the transition from resistance to susceptibility. In general, unripe fruit are resistant to pathogen infection but become increasingly more susceptible as they ripen. During ripening, fruit undergo significant physiological and biochemical changes that are coordinated by complex regulatory and...

متن کامل

Metabolomic approaches reveal that cell wall modifications play a major role in ethylene-mediated resistance against Botrytis cinerea.

In Arabidopsis, resistance to the necrotrophic fungus Botrytis cinerea is conferred by ethylene via poorly understood mechanisms. Metabolomic approaches compared the responses of the wild-type, the ethylene-insensitive mutant etr1-1, which showed increased susceptibility, and the constitutively active ethylene mutants ctr1-1 and eto2 both exhibited decreased susceptibility to B. cinerea. Fourie...

متن کامل

Ethylene production by Botrytis cinerea in vitro and in tomatoes.

A laser-based ethylene detector was used for on-line monitoring of ethylene released by the phytopathogenic fungus Botrytis cinerea in vitro and in tomato fruit. Ethylene data were combined with the results of a cytological analysis of germination of B. cinerea conidia and hyphal growth. We found that aminoethoxyvinylglycine and aminooxyacetic acid, which are competitive inhibitors of the 1-ami...

متن کامل

Comparative transcriptome analysis between an evolved abscisic acid-overproducing mutant Botrytis cinerea TBC-A and its ancestral strain Botrytis cinerea TBC-6

Abscisic acid (ABA) is a classical phytohormone which plays an important role in plant stress resistance. Moreover, ABA is also found to regulate the activation of innate immune cells and glucose homeostasis in mammals. Therefore, this 'stress hormone' is of great importance to theoretical research and agricultural and medical applications. Botrytis cinerea is a well-known phytopathogenic ascom...

متن کامل

ABA Suppresses Botrytis cinerea Elicited NO Production in Tomato to Influence H2O2 Generation and Increase Host Susceptibility

Abscisic acid (ABA) production has emerged a susceptibility factor in plant-pathogen interactions. This work examined the interaction of ABA with nitric oxide (NO) in tomato following challenge with the ABA-synthesizing pathogen, Botrytis cinerea. Trace gas detection using a quantum cascade laser detected NO production within minutes of challenge with B. cinerea whilst photoacoustic laser detec...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • FEMS microbiology ecology

دوره 40 2  شماره 

صفحات  -

تاریخ انتشار 2002